Objectives

Integrating pathogen genomic surveillance with bioinformatics can enhance public health responses by identifying risk and guiding interventions. This study focusses on the two predominant Campylobacter species, which are commonly found in the gut of birds and mammals and often infect humans via contaminated food. Rising incidence and antimicrobial resistance (AMR) are a global concern and there is an urgent need to quantify the main routes to human infection.

Methods

During routine US national surveillance (2009-2019), 8,856 Campylobacter genomes from human infections and 16,703 from possible sources were sequenced. Using machine learning and probabilistic models, we target genetic variation associated with host adaptation to attribute the source of human infections and estimate the importance of different disease reservoirs.

Results

Poultry was identified as the primary source of human infections, responsible for an estimated 68% of cases, followed by cattle (28%), and only a small contribution from wild birds (3%) and pork sources (1%). There was also evidence of an increase in multidrug resistance, particularly among isolates attributed to chickens.

Conclusions

National surveillance and source attribution can guide policy, and our study suggests that interventions targeting poultry will yield the greatest reductions in campylobacteriosis and spread of AMR in the US.